Contact us

(886)-2-82192005

Clinical effects of far-infrared therapy in patients with allergic rhinitis. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:1479-82.


  • Allergic rhinitis (AR) is the sixth most common chronic illness worldwide, which has a significant impact on patients’ quality of life. The actual cost of AR is staggering, approximately $5.6 billion being spent annually in direct medical costs and other indirect costs. Therefore, it should be taken seriously upon its evaluation and treatment. AR is an IgE-mediated inflammation, which symptoms are likely due to increased vascular permeability. Current therapeutic options such as avoidance of allergen, medication and immunotherapy are unsatisfactory. Far-infrared (FIR) is an invisible electromagnetic wave with a wavelength longer than that of visible light. It has been used to treat vascular diseases as a result of an increase in blood flow. The objective of this study was to evaluate the clinical effects of FIR therapy in patients with AR. Thirty-one patients with AR were enrolled in this study. A WS TY101 FIR emitter was placed to face the patient’s nasal region at a distance of 30 cm. The treatment was performed for 40 min every morning for 7 days. Every day, patients recorded their symptoms in a diary before and during treatment. Each symptom of rhinitis was rated on a 4-point scale (0-3) according to severity. During the period of FIR therapy, the symptoms of eye itching, nasal itching, nasal stuffiness, rhinorrhea and sneezing were all significantly improved. Smell impairment was not improved until after the last treatment. No obvious adverse effect was observed in thepatients during treatment and follow-up. We concluded that FIR therapy could improve the symptoms of AR and might serve as a novel treatment modality for AR.

Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-inducedproliferation in human umbilical vein endothelial cells. PLoS One. 2012;7(1):e30674.


  • Many studies suggest that far-infrared (FIR) therapy can reduce the frequency of some vascular-related diseases. The non-thermal effect of FIR was recently found to play a role in the long-term protective effect on vascular function, but its molecular mechanism is still unknown. In the present study, we evaluated the biological effect of FIR on vascular endothelial growth factor (VEGF)-induced proliferation in human umbilical vein endothelial cells (HUVECs). We found that FIR ranging 3∼10 µm significantly inhibited VEGF-induced proliferation in HUVECs. According to intensity and time course analyses, the inhibitory effect of FIR peaked at an effective intensity of 0.13 mW/cm(2) at 30 min. On the other hand, a thermal effect did not inhibitVEGF-induced proliferation in HUVECs. FIR exposure also inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinases in HUVECs. FIR exposure further induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO generation in VEGF-treated HUVECs. Both VEGF-induced NO and reactive oxygen species generation was involved in the inhibitory effect of FIR. Nitrotyrosine formation significantly increased in HUVECs treated with VEGF and FIR together. Inhibition of phosphoinositide 3-kinase (PI3K) by wortmannin abolished the FIR-induced phosphorylation of eNOS and Akt in HUVECs. FIR exposure upregulated the expression of PI3K p85 at the transcriptional level. We further found that FIR exposure induced the nuclear translocation of promyelocytic leukemia zinc finger protein (PLZF) in HUVECs. This induction was independent of a thermal effect. The small interfering RNA transfection of PLZF blocked FIR-increased PI3K levels and the inhibitory effect of FIR. These data suggest that FIR induces the nuclear translocation of PLZF which inhibitsVEGF-induced proliferation in HUVECs.

Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed endothelial progenitor cell functions. Cardiovasc Diabetol. 2012 Aug 15;11:99.


    • BACKGROUND:

    • Far infra-red (IFR) therapy was shown to exert beneficial effects in cardio vascular system, but effects of IFR on endothelial progenitor cell (EPC) and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process.

 

    • MATERIALS AND METHODS:
    • Starting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocin (STZ)-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group). The latter mice were placed in an IFR dry sauna at 34°C for 30 min once per day for 5 weeks.

 

    • RESULTS:
    • Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1(+)/Flk-1(+)) mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group). However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP(+)/CD31(+) double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H(2)O(2) production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice.

 

  • CONCLUSIONS:
  • Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced diabetic mice, and these beneficial effects may derive from enhancement of EPC functions and homing process. 

Far-infrared therapy as a novel treatment for encapsulating peritoneal sclerosis. Am J Gastroenterol. 2014 Dec;109(12):1957-9.


 

Effects of far-infrared radiation on heart rate variability and central manifestations in healthy subjects: a resting-fMRI study. Lasers Med Sci. 2015 Jan;30(1):295-301.


  • The aim of this study was to investigate the autonomic responses and central manifestations by peripheral FIR stimulation. Ten subjects (mean ± SD age 26.2 ± 3.52 years) received FIR stimulation at left median nerve territory for 40 min. Electrocardiograph was continuously recorded and heart rate variability (HRV) were analyzed. By using a 3 T-MRI scanner, three sessions of resting-state functional magnetic resonance images (fMRI) were acquired, namely, before (baseline-FIR), immediately after (IA-FIR) and 15 min after FIR was turned off (Post-FIR). The fractional amplitude of low-frequency (0.01-0.08 Hz) fluctuation (fALFF) of each session to evaluate the intensity of resting-brain activity in each session was analyzed. Our results showed that FIR stimulation induced significant HRV responses such as an increasing trend of nLF and LF/HF ratio, while FIR increased fALFF in right superior front gyrus, middle frontal gyrus and decreased the resting brain activity at fusiform gyrus, extrastriae cortex, inferior temporal gyrus and middle temporal gyrus, especially 15 min after FIR was turned off. We conclude that the central manifestation and the autonomic responses are prominent during and after FIR stimulation, which provide important mechanistic explanation on human disorder treated by such energy medicine.

Gender-Related Effect in Oxygenation Dynamics by Using Far-Infrared Intervention with Near-Infrared Spectroscopy Measurement: A Gender Differences Controlled Trial. PLoS One. 2015 Nov 10;10(11):e0135166.


  • Many studies have indicated the microcirculation can directly respond to disease-related symptoms. However, the capacity of microcirculation would vary due to the gender differences. Near-infrared spectroscopy (NIRS) is a noninvasive technique to monitor tissue oxygenation dynamics. In this study, the far-infrared (FIR) source was used for physiological intervention of microcirculation. The experimental results show that the nature difference of oxygenation status exists between male and female during FIR irradiation. Therefore, we suggest the NIRS-based assessment should be calibrated with the gender-relatedeffect for clinical diagnosis of peripheral arterial disease.

Far-Infrared Therapy Promotes Nerve Repair following End-to-End Neurorrhaphy in Rat Models of Sciatic Nerve Injury. Evid Based Complement Alternat Med. 2015;2015:207245.


  • This study employed a rat model of sciatic nerve injury to investigate the effects of postoperative low-power far-infrared (FIR) radiation therapy on nerve repair following end-to-end neurorrhaphy. The rat models were divided into the following 3 groups: (1) nerve injury without FIR biostimulation (NI/sham group); (2) nerve injury with FIR biostimulation (NI/FIR group); and (3) noninjured controls (normal group). Walking-track analysis results showed that the NI/FIR group exhibited significantly higher sciatic functional indices at 8 weeks after surgery (P < 0.05) compared with the NI/sham group. The decreased expression of CD4 and CD8 in the NI/FIR group indicated that FIR irradiation modulated the inflammatory process during recovery. Compared with the NI/sham group, the NI/FIR group exhibited a significant reduction in muscle atrophy (P < 0.05). Furthermore, histomorphometric assessment indicated that the nerves regenerated more rapidly in the NI/FIR group than in the NI/sham group; furthermore, the NI/FIR group regenerated neural tissue over a larger area, as well as nerve fibers of greater diameter and with thicker myelin sheaths. Functional recovery, inflammatory response, muscular reinnervation, and histomorphometric assessment all indicated that FIR radiation therapy can accelerate nerve repair following end-to-end neurorrhaphy of the sciatic nerve.

Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci Rep. 2016 Jul 29;6:30436.


  • Far infrared radiation (FIR) is currently investigated as a potential therapeutic strategy in various diseases though the mechanism is unknown. Presently, we tested if FIR mediates beneficial effects in a cell model of the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3). SCA3 is caused by a mutation leading to an abnormal polyglutamine expansion (PolyQ) in ataxin-3 protein. The consequent aggregation of mutant ataxin-3 results in disruption of vital cell functions. In this study, neuroblastoma cells (SK-N-SH) was transduced to express either non-pathogenic ataxin-3-26Q or pathogenic ataxin-3-78Q proteins. The cells expressing ataxin-3-78Q demonstrated decreased viability, and increased sensitivity to metabolic stress in the presence rotenone, an inhibitor of mitochondrial respiration. FIR exposure was found to protect against these effects. Moreover, FIR improved mitochondrial respiratory function, which was significantly compromised in ataxin-3-78Q and ataxin-3-26Q expressing cells. This was accompanied by decreased levels of mitochondrial fragmentation in FIR treated cells, as observed by fluorescence microscopy and protein expression analysis. Finally, the expression profile LC3-II, Beclin-1 and p62 suggested that FIR prevent the autophagy inhibiting effects observed in ataxin-3-78Q expressing cells. In summary, our results suggest that FIR have rescuing effects in cells expressing mutated pathogenic ataxin-3, through recovery of mitochondrial function and autophagy.

Oxygenation dynamics of sepsis patients undergoing far-infrared intervention based on near-infrared spectroscopy. J Biophotonics. 2016 Nov 4.

  • Near-infrared spectroscopy (NIRS; continuous wave type) is a noninvasive tool for detecting the relative change of oxyhemoglobin and deoxyhemoglobin. To make this change, intervention methods must be applied. This study determined the hemodynamics of 44 healthy participants and 35 patients with sepsis during exposure to FIR as a novel physical intervention approach. Local microcirculation of their brachioradialis was monitored during exposure and recovery through NIRS. The variations in blood flow and microvascular reaction were determined by conducting paired and unpaired t tests. The oxyhemoglobin levels of the healthy participants increased continuously, even during recovery. In contrast to expextations, the oxyhemoglobin levels of the patients plateaued after only 5 min of FIR illumination. The proposed method has potential applications for ensuring efficient treatment and facilitating doctors in diagnosing the functions of vessels in intensive care units. Mapping diagrams of HbO2 in healthy males and males with sepsis illustrated unique scenarios during the process.